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The gas-flow pattern that occurs when a bubble grows during its passage through a 
fluidized bed is investigated by applying Davidson’s (1961) model in an unsteady 
manner. It is found that the form of the cloud perceived by an observer of this un- 
steady motion is significantly different from that predicted by the steady theory. 
Growth is shown to lead to a reduction in the penetration of the cloud ahead of the 
bubble and a reduction in the area of overlap between cloud and particles. The cloud 
boundary also interaepts the bubble boundary, and the gas entering the bubble to 
sustain its growth does so through its base. There is good agreement with experi- 
mental observation of clouds. 

1. Introduction 
Davidson’s (lQ6l) model of a bubble in a fluidized bed was the first to predict the 

gas cloud that forms around the bubble when its velocity exceeds the interstitial gas 
velocity into the bed. Several current models of chemical reaotion in fluidized beds 
now consider reactions within the cloud and emulaion phases separately, so that it is 
clearly important to know how much gm is invested in the cloud at any instant. 
Figure 1 ( a )  shows Rowe, Partridge & Lyall’s (1964) comparison of cloud shapes pre- 
dicted theoretically for circular two-dimensional bubbles moving steadily and a 
typical shape observed experimentally using NO, as a tracer gas. As far as the distance 
to which the cloud penetrates the particle flow ahead of the bubble is concerned, the 
data of Rowe et al., although scattered, favoured Murray’s (1965a’ b)  theory, which 
took into account an equation of motion for the particles, but both theories appear to 
be seriously deficient in their descriptions of the cloud shape behind the bubble. The 
most obvious difference shown in figure 1 (a) is that real clouds appear to intersect the 
bubble boundary, while the theoretical cloud boundaries always surround it. It might 
be thought that the remon for this discrepancy could be found in the fact that real 
bubbles are not circular, but studies of non-circular bubbles using both theories have 
not reproduced this aspect of real cloud behaviour, although they do indicate reduc- 
tions in cloud volume from the values obtained for circular bubbles (Collins 1965; 
Murray 1965~’ b ;  Stewart 1968; Clift et al. 1972). Rowe et al. observed also that gas 
can be shed from the sides of the cloud in lobes of characteristic form (shown here in 
figure 2), and they noted that this feature was also not described by the theories with 
which their comparisons were made. Their experiments were set up and performed 
with great care and skill, and they sought to reproduce the condition of steady motion 
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(a )  ( b )  

FIG~GE 1. (a) Rowe, Partridge & Lyall's (1964) comparison of experimental and steady theo- 
retical cloud shapes for a = 2. - - -  , Davidson (1961); - - - -, Murray (1965~1, b ) ;  -, 
experimental cloud. (b)  Cloud shapes for a = 2. - - -, Davidson's (1961) steady solution; -, 
growing bubble, this work with y = 0.26. 

FIGURE 2. Experimental cloudforms in a two-dimensional bed from the 
experiments of Rowe et al. (1964) ; a 2-5. 
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assumed in the theories, but it will be clear from figure 2 that the natural experi- 
mental motion is essentially unsteady. Unsteadiness can arise in a number of forms, 
not all of which are present in figure 2: for example there can be changes in bubble 
shape, velocity, orientation and path as well as the evident change in size. Recently 
Collins (1980) has shown that incorporation of some of these unsteady features, 
namely yaw, surge and sway, into Davidson’s model can lead to shedding phenomena 
like those shown in figure 2. In this paper it is shown that if bubble growth is con- 
sidered in the context of Davidson’s model then significant changes in the gas flow 
pattern occur, and these changes are consistent with the real cloud behaviour shown 
in figure 1 (a). Specifically it is found that 

(i) the cloud penetration ahead of the bubble is reduced by bubble growth; 
(ii) the cloud intercepts the bubble boundary; 
(iii) the gas entering the bubble to sustain its growth does so through its base. 

With a rate of growth sufficient to reduce the cloud penetration to values which are 
consistent with Murray’s theory, and hence with the experiments of &we et al., the 
cloud has the typical shape shown in figure 1 ( b ) .  The area of overlap between cloud 
and particles is found to be substantially reduced by bubble growth. 

2. Theory 

continuous media which interact according to Darcy’s law so that 
The gas and particle phases are treated in Davidson’s theory as incompressible 

divu = 0, divv = 0, (I) ,  (2) 

(3) 

where u and v are the gas and particle velocity vectors, p is the gas pressure, and k 
is considered to be constant. Davidson applied these equations originally to the 
problem of steady motion of a circular or spherical bubble, but it was later observed 
(Davidson & Harrison 1966) that the equations apply also when the motion is unsteady, 
provided that the voidage in the particle phase is constant. Davidson & Harrison 
used this result to study the division of total gas flow between bubble and interstitial 
phases in a freely bubbling bed, and Collins (1980) has recently used it to describe 
cloud patterns around isolated bubbles that move with yaw, surge and sway. From 
(1)-(3) we have 

which shows that, for given boundary conditions on p ,  the gas pressure distribution is 
unaffected by the particle motion, and hence from (3) 

u - v = - kgradp, 

divgradp = 0, (4) 

u = u,+v, (5) 

where u, is the gas velocity that would exist if the particles were stationary. This 
result holds for both steady and unsteady motions with constant voidage, and it 
enables us to determine the gas velocity field at  any instant in an unsteady motion by 
superimposing two constituents: (i) the particle velocity field, and (ii) the gas velocity 
field tha.t would exist at that instant if the particles were fixed. 

Irrotational motions are taken to describe both constituent flows so that 

#G = #GO + #I>, (6) 
6-2 
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where q5 is the velocity potential, with suffixes G and P denoting gas and particles 
respectively. The potential for the constituent gas motion is clearly = - kp from 
(3). This paper will concentrate on flow patterns for two-dimensional motions, since 
they are capable of experimental observation. 

Consider a circular bubble rising and growing without change of shape. Axes are 
fixed on the bubble, with the positive x-direction vertically upwards, the bubble 
velocity is denoted by U', its radius a increases at  a rate a and the interstitial gas 
velocity into the bed and remote from the bubble is U,. The two potential problems 
which arise for solution and superposition are then as follows. 

For the particles (problem A) 
V2q5p = 0, (7) 

with boundary condit.ions 

I aq5,/ax+-uB as r + a ,  

a$,/ar=a on r = a. 

For the constituent gas motion (problem B) 

v2q5,o = 0, 
with boundary conditions 

a&,/ax+U, as r - f c o ,  

q5ao = constant on r = a. 

(9) 

The acyclic solution of problem A is 

q5p = - U,(r + a2/r) cos 8 + cui log r, (11) 

which consists of a streaming motion past the bubble with an additional source term 
representing the radial velocity field produced by bubble growth. In  the steady 
theory (Davidson 1961) the solution of problem B was taken to be 

( 1 2 )  

which represents percolation into a stationary void in an infinite porous mass. For 
the purposes of the present theory, however, it is necessary to note that the solution 
of problem B is not unique, because a term representing a sink, of strength m say, 
may be added to ( 1 2 )  without affecting the boundary conditions so that 

= U,(r - &/r) cos 8, 

= U,(r  - $ / r )  cos 8 - (m/2n) logr. (13) 

This sink term must be included here in order to deliver to the bubble the gas flow 
that will result in its growth,? and it follows that the sink strength is such. that 
m = 2nari/s, where E is the voidage in the particle phase. Inside the bubble it is assumed 
that e = 1. The potential for the gas flow associated with a growing bubble obtained 
from (6), (1 1) and (13) is therefore 

q5, = -U,{(a-i)r+(a+i)u2/r}cos8-(cui(l-E)/E)logr, (14) 

where a = U,/U,. When expressed in terms of a complex potential W, = 
we obtain 

+ i$, 

w, = -&{(a - l ) z + ( a +  1)a2/z+aylogz}, (15) 

t Without the sink in (13), superposition of (1 1) and (12) would imply the presence of a net 
source of gas within the bubble in the resulting gas flow. 
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Growth stream t----i 

FIGURE 3. Instantaneous streamline pattern associated with a 
growing bubble; a = 2, y = 0.2. 

where y = (1  - e) ci/eU, is a parameter describing the growth rate. Davidson’s steady 
theory has y = 0, and the steady streamline $G = 0 from (15) then defines a cloud 
which forms when a > 1 and is concentric with the bubble with radius rc given by 

Figure 1 (a)  shows this cloud for a = 2; the area of the region of overlap of cloud and 
particles in this case is fouNd from (16) to be 

so = 2na2/(a- 1) .  (17) 

When y + 0, (15) defines a pattern of instantaneous streamlines whose character is 
shown in figure 3 for the values a = 2, y = 0.2. The gas responsible for bubble growth 
is evidently drawn from a channel ahead of the bubble whose asymptotic width is 
found to be 2nuy/(a- 1)  from (15) but, because gas flows out of the bubble roof over 
the arc HH’,  this growth stream is deflected around the bubble and enters through 
its base over the arc LL‘. The gas efflux from the bubble roof produces an instantaneous 
stagnation point (relative to axes fixed on the bubble centre) at  S, while the collection 
of the growth stream at the bubblerear leads to an instantaneous stagnation point at  
S’. From the derivative of (15), the locations of these points on the x-axis, which will 
be denoted by rs,  are at the roots of the quadratic 

r ~ ( a - 1 ) + r , a y - a 2 ( a + 1 )  = 0,  (18) 
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FIGURE 4. Relationship between the streamline $I.o = 0 and the positions of marked gas ele- 
ments located initially on the bubble boundary; a = 2, y = 0.2, E = 0.4. -, streamline 
$ 0 -  - 0 ;  - . * - , current positions of marked elements. The initial bubble radius is a,, the distance 
travelled by the bubble centre between images is 0.75~~. 

that is where 
rs 

2a-1' 
- =  
a 

The linearized form of (19), namely 

shows that, to first order, the stagnation points are displaced downwards through a 
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distance &ay/(a- 1) from their positions for the steady state at  this value of a 
(cf. (16)). The curved branch of the instantaneous streamline +G = 0 passes through S 
and has the equation 

It intersects the bubble boundary at  L and L', so defining the arc length over which 
the growth stream enters the bubble. This arc subtends an angle 2x at the bubble centre, 
where 

which gives 

to first order in y. The arc length is independent of a and is constant for a constant 
growth-rate parameter y. The instantaneous streamline $lo = 0 is changing continually, 
and gas which has once entered the bubble is trapped behind this line; in this unsteady 
motion, however, it does not represent the boundary of a cloud as it does in the steady 
case, although, as will be shortly apparent, there can be a close similarity. The boun- 
dary of the cloud perceived by an observer of the motion separates what may be 
described as 'old' gas which has been captured by the bubble (and which would be 
coloured experimentally by mixing with NO,) and new gas which is clear. To find the 
location of this boundary and to show its relationship with the streamline = 0 it 
is necessary to do numerical work on (15) in order to follow the paths of marked 
elements of gas throughout the motion. For simplicity we take a and y to be constants 
so that the form of the instantaneous streamline pattern does not change; it is only 
altered in scale as the bubble expands with constant a. For a = 2, y = 0.2 and 6 = 0.4, 
figure 4 shows the positions a t  six subsequent times of marker elements of gas which 
were located on the bubble boundary P = a, at the initial instant. The constituents of 
this figure were obtained from a modified form of the computer-graphics program 
developed to produce animated sequences of the cloud patterns that arise owing to 
yawing, surging and swaying motions of the bubble (Collins 1980). It may be seen 
that the marker elements (representing gas dyed with NO,) rapidly adopt locations 
close to the streamline +ra = 0 but always contained by it. The marker starting from 
the bubble apex does not reach the inst.antaneous stagnation point at  S, the location 
of which is itself advancing relative to the bubble centre at  a velocity greater than a, 
but it appears to settle to the position on the x-axis where the local instantaneous gas 
velocity relative to the bubble centre is equal to the velocity of the bubble apex relative 
to the same datum, that is a. On this basis the distance to the cloud front from the 
origin obtained from the derivative of (1 5 )  and denoted by rc is given by the positive 
root of the quadratic 

r2(a - 1) + ray8/sin 8 - aa(a + 1) = 0. (21) 

sin x = &y(n - XI, (22) 

x = hn, (23) 

.:(a- 1 + y e / ( l - e ) ) + r c a y - a 2 ( a + 1 )  = 0, 
namely 

(25) 
a+1 +" Y 

a- 1 +ye/(  1 - E )  2 a- 1 a - 1 +ye/( 1 - E ) *  

On retaining only the linear terms in y, (25) gives 
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FIGURE 5. (a) Variation of rc/a with a and y from (25) ; B = 0.5. ( b )  Comparison of cloud dimen- 
sions. - --, Davidson’s (1961) steady solution; 0, Murray (1965a, b ) ;  - , this work with 
y = 0.3{(a- 1) (1 - s ) / ~ ( a +  1))); B = 0.5. (The effect of changes in B in the range 0.4 < E < 0.8 
is very weak and is not shown for clarity.) 

which indicates that, for given a, bubble growth acts to reduce the extent of the pene- 
tration of the cloud into the particle flow. For comparative purposes it is convenient 
to take E = 0.5, so that the term E / (  1 - E) = 1, and for this value figure 5 (a) shows the 
cloud dimension rc obtained from (25) for several values of y. This figure confirms that, 
in an instantaneous experimental comparison effected at  a given value of a, the 
presence of growth would be expected to produce cloud sizes smaller than those given 
by Davidson’s steady theory; the cloud boundary, moreover, intercepts the bubble 
boundary. These findings are consistent with the observations of Rowe et al. Their 
measurements of rc were compared with two steady theories, and they were found to 
favour Murray’s steady equation 
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00 
ff = 6 ,  -y = 0.25, E = 0.55 OL = 6 , ~  = 0.05, E = 0.55 

FIGURE 6. Comparison of approximate equation for cloud shape and the cloud form obtained 
from computer-graphics sequences. - , equation (29) ; 0, positions of marked elements. 
(Marker sizes are exaggerated for the purposes of this figure.) 

with the cloud shape shown in figure 1 (a). For the present purpose we may take this 
equation to represent a mean line through the experimental data, and figure 5 ( b )  
shows that it is virtually coincident with the line obtained from the present unsteady 
theory when the growth-rate parameter y adopts values given by 

In the data obtained from experiments of this type scatter is inevitable, and it would 
not be possible in fact to distinguish experimentally between the line given by (28) 
and that given by y N 0.2 shown in figure 5 (a). 

There is no exact expression available to describe the rest of the cloud boundary 
defined by the positions of the other markers, but fortunately the apparent shape 
does not differ radically from the shape of the streamline $G = 0 and, as a result, a 
very good approximation may be obtained by scaling (21) in a particular manner. A 
comparison between the linearized equations (26) and (20) suggests that the cloud 
penetration on the axis behaves effectively as if y in (20) has been replaced by 
y[l+ (s/(l -s)) ((a+ l)/(a- 1))*]. If we make the same replacement in (21), then the 
approximate description of the cloud becomes 

~ 2 ( a  - 1) + ray*O/sin O - a2(a + 1) = 0,) 

with (29) 

The utility of this approximate description may be gauged from the comparisons 
made in figure 6, which show that (29) describes the positions of marker elements 
obtained from computer-generated sequences very well in a variety of combinations 
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FIGURE 7. Variation of cloud overlap ratio I' with i / a  and y*. 

of a, y and e. The approximation is less successful near a = 1; its useful range is for 
a 9 1.5. 

In the experiments of Rowe et al. a typical value of voidage was IZ = 0.4. For a = 2, 
(28) then gives y = 0-26, and the cloud shape for this combination obtained from (29) 
has been plotted in figure 1 (b ) .  Qualitative agreement with the typical experimental 
form in figure 1 (a) is very good. Clearly, bubble growth leads to a significant reduction 
in the amount of gas present in the cloud overlap region, and we may estimata this 
from (29) by evaluating the area of the overlap, S = (r2-a2) d8, where w is the 
angular location of the intercept of cloud and bubble. When only linear terms in y* 
are retained, the area of the overlap is found to be 

where (17)  and (20) have been used. 
It may be shown that as y* + 0 

N y* logy* - 0.2387*, (31) 

so that the asymptotic form of the cloud overlap ratio due to growth, denoted by 
I' = S/S,, is given by 

r N i+-(-] a+ 'y*logy*-gy* [ 1 +0.238 (-1 a+i * ] 
2 a-1 a- 1 

as y* --f 0. For general values of y*,  the cloud overlap ratio has been evaluatedwithout 
linearization by numerical integration, and the results are shown in figure 7. It is 
clear from this figure that the effect of growth in reducing r can be very large (for 
high values of a, r N 0.4 when y* 2: 0.5 for example), and changes of this magnitude 
brought about by the capture of gas from the growth stream ahead of the bubble 
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combined with the dilution of cloud gas by the same mechanism will have important 
consequences for gas contacting in the bed. Other features apparent from figure 7 are 
that I' is relatively insensitive to a when a 2, and that I' = 0 for all values of a if 
y* > 2. The latter result implies that no cloud can form if the growth rate exceeds a 
certain value, because the growth stream then enters the bubble over the whole of 
its perimeter. The maximum value of y involved may be obtained by setting rc/a = 1 
in (24), which gives y = 2(1 - B ) .  We observe that these maximum values of y and y* 
are consistent with the relationship proposed in (29), provided that a is large. 

3. Concluding remarks 
The approach of the preceding work has been to use the experimental data of 

Rowe et al., expressed through (28), to estimate the growth-rate parameter y that 
would make Davidson's model consistent with experiments in respect of the cloud 
penetration distance rc. In  doing that, the effects of other features known to lead to 
some reduction in rc,  such as the presence of the wake fraction and of neighbouring 
walls, have not been taken into account, so that y is slightly overestimated by this 
approach. The growth rates so found are generally modest and are consistent with 
those observable in figures such as figure 2. For example, (28) implies 

(33) 

which gives a = O.058UB if a = 3 and B = 0.4, so that, in moving a distance of say 
6ao, such a bubble would increase in radius by around 35 yo. Under these conditions, 
the area of cloud overlap at any stage would be only about 40 yo of that predicted by 
the steady tbeory. 

For convenience this paper has considered the case when both a and y are constants, 
but if the gas-flow patterns are to be followed with the computer this restriction can 
be easily removed. Variations in a, representing surge, have been studied previously 
(Collins 1980), and an example of the effect of a small surge on the cloud form is 
shown in figure 8(a). In all examples shown in this figure the marker elements were 
considered to be situated initially on the boundary of the cloud given by Davidson's 
steady solution, and the bubbles have moved a distance of 6ao from this initial 
configuration. The computer-graphics output gives a series of illuminated points 
which represent the locations of the markers and of the bubble boundary, and the 
markers are made to appear to flow as the sequences are animated. To aid interpre- 
tation in the stills that form figure 8, the cloud markers have been joined by lines 
added manually. A periodic variation in y leads to patterns generally similar to those 
found for surge as shown in figure 8 (a), that is there is shedding of gas from the cloud 
in a lobe aligned along the line of motion. An interesting extreme example is shown 
in figure 8 (d)  for a high value of a coupled with a periodic variation in y sufficient to 
produce peak-amplitude changes in bubble radius of only O-Ola,. The effect is to 
shed gas from the cloud at  a rate which makes it appear that gas is simply leaking out 
of the cloud along the line of motion. Rowe et al. record that this is a general feature 
of the patterns they observed a t  high values of 01. These are, however, not the only two 
processes that can lead to gas shedding; figures 8 ( b ,  c) show shedding due to yaw, 
and to sway, and it will be clear that a superimposition of such perturbations with a 
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FIGURE 8. Examples of cloud patterns resulting from several unsteady influences. The bubble 
h a  moved a distance 6a0 from its initial position in each case. - - -, boundary of cloud and 
shed gas; * a ,  bubble boundary. (a) Surge; one half-cycle, maximum perturbation +O-la, 
a = 2.5. (b) Yaw; bubble path at  arctan 0.1 to the vertical, a = 3.5. (c) Sway; one cycle, maxi- 
mum horizontal displacements f 0.25a0, a = 2.5. (d) Periodic growth ; three cycles, maximum 
perturbations fO-O1ao ,  a = 20. (e) Combined yaw, surge and sway; a = 4. 

multiplicity of possible combinations of amplitudes, phases and durations will be able 
to produce patterns of great complexity. An example stemming from a combination 
of yaw, surge and sway is shown in figure 8 ( e ) .  It would seem that there is a great deal 
of information on gas exchange yet to be obtained from Davidson’s theory applied 
in an unsteady manner. In addition to the influences already mentioned, it should be 
possible for example to consider the effects due to the growth of bubbles of non- 
circular form trailing a wake fraction, the effect of particle transfer to and from the 
wake fraction, and the gas exchange that occurs during bubble formation. 

I am indebted to Mr E. Lyall and Mr B. A. Partridge of A.E.R.E., Harwell for 
providing the photographs shown in figure 2. 
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